Nitrous Oxide Response to Nitrogen Fertilizer in Irrigated Spring Wheat in the Yaqui Valley, Mexico Neville Millar^{1,2}, Kevin Kahmark¹, Abisai Urrea³, G. Philip Robertson^{1,2}, and Ivan Ortiz-Monasterio³ ¹ W.K. Kellogg Biological Station, Michigan State University, ² Dept. of Plant, Soil and Microbial Sciences, Michigan State University, ³ CIMMYT, Int. Apdo. Postal 6-641, 06600 Mexico, DF., Mexico

OBJECTIVE & OVERVIEW

To investigate trade-offs between fertilizer N input, wheat yield, and nitrous oxide (N₂O) emissions, to inform management strategies that can mitigate N₂O emissions without compromising productivity and economic return.

- The Yaqui Valley, one of Mexico's major breadbaskets, encompasses ~225,000 ha of cultivated, irrigated cropland, up to 75% of which is planted to spring wheat annually (Fig. 1)...
- Region is agro-ecologically representative of environments where 40% of wheat is produced in the developing world .

Fig. 1. Yaqui valley a) crop landscape, b) location, and c) CIMMYT offices in Obregon.

- Nitrogen (N) fertilizer applications to spring wheat have nearly doubled since the 1980s, and currently average around 300 kg N ha⁻¹.
- High N rates are a substantial component of total crop production costs, and also may result in significant N losses to the environment via gaseous emissions.
- Nitrous oxide (N_2O) , a potent greenhouse gas (GHG) is produced naturally by microbial denitrification and nitrification.
- N₂O emissions increase following soil management activities, especially fertilizer N application, and particularly when this input exceeds crop requirement.

EXPERIMENTAL SITE & DESIGN

- Yaqui Valley, near Ciudad Obregon, Sonora, Mexico (27°N:109°W; 40 masl; Fig. 1).
- Sandy clay mixed montmorillonite (Typic Caliciorthid).
- RCBD; 8 N rate treatments (0, 40, 80, 120, 160, 200, 240 and 280 kg N ha⁻¹); 6 reps.).
- GHG/soil N measurements (0, 80, 160, 240 and 280 kg N ha⁻¹; 4 reps; Fig. 2).

502	503	402	403	108	101
507	506	407	406	107	102
504	508	405	401	106	103
505	501	408	404	105	104
607	608	302	303	202	205
603	606	305	301	206	208
605	601	304	307	207	201
602	604	308	306	203	204

Experimental RCBD CENEB, Yaqui 810, Ciudad Obregon Sonora, Mexico). GHG and soil N measurements taken from shaded plots (each 3.2m x 5m).

MANAGEMENT & METHODS

- Spring wheat (*Triticum turgidum* var. durum) after summer rotation with unfertilized maize.
- Fertilizer (pelletized urea) applied to furrows (fondo) prior to irrigation (Fig. 3).
- Manual gas flux chamber technology to measure N_2O (Fig. 4).

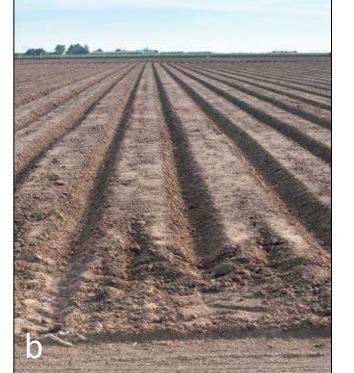
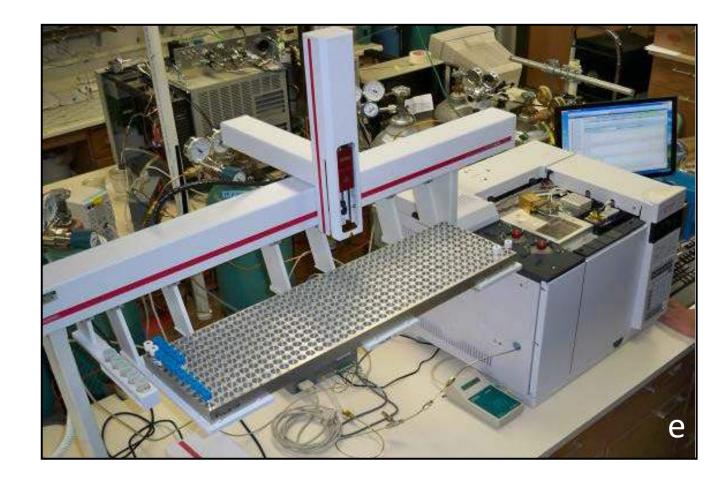


Fig. 3. Management practices at site: a) creating drainage during b) bed (lomo) and furrow (fondo) preparation, prior to c) furrow fertilization with pelletized urea and d) irrigation.



MANAGEMENT & METHODS continued

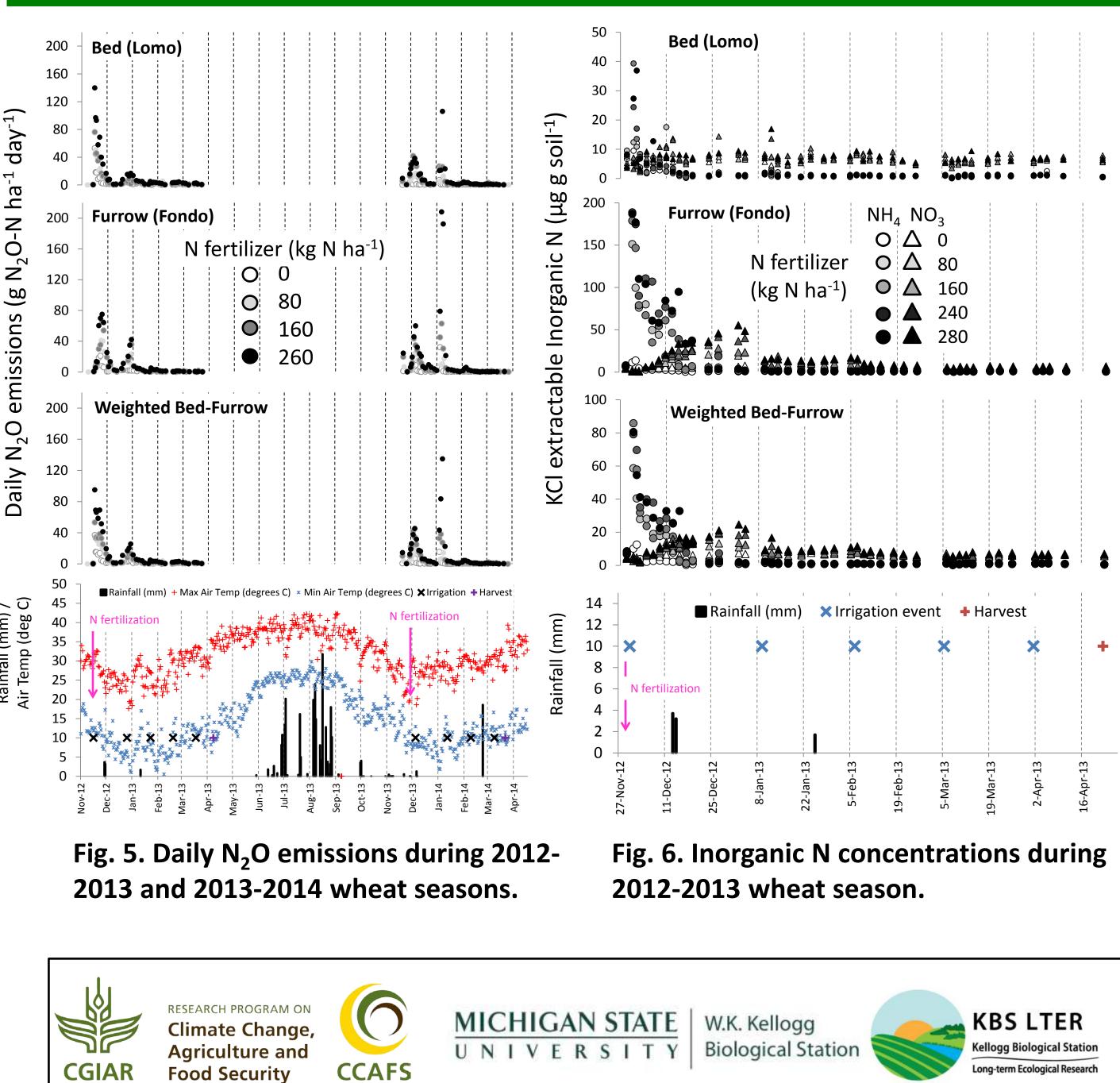


Fig. 4. Manual chamber sampling and analysis for N₂O: a) Bed and furrow dimensions, b) chamber placement within each plot, c) gas sample extraction from chamber headspace, d) sample vial filling, e) automated gas chromatography analysis, and f) N₂O concentration vs. sampling time ($\delta C/\delta T$) graph for N₂O flux calculations.

RESULTS

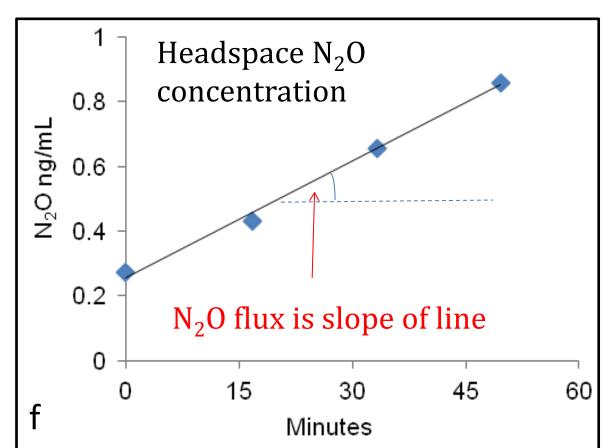
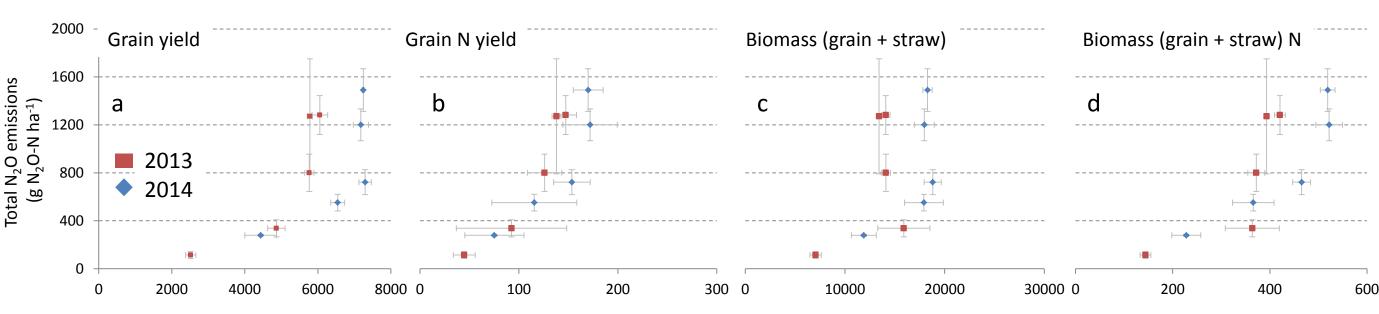



Fig. 7. a-c) Cumulative and d) total N₂O emissions Fig. 8. a) Grain yield and b) grain N yield and nitrogen use efficiency in 2013 and 2014. and e) average inorganic N concentrations.

- fertilizer application.
- ha⁻¹ in 2014 (Fig. 8a).
- thresholds (Fig. 9).

In 2013, a reduction in N fertilizer rate from 280 to 120 kg N ha⁻¹ would have resulted in N₂O mitigation of 1.5 kg ha⁻¹. If we assume all spring wheat planted that year in the Yaqui Valley (~160,000 ha) received these N fertilizer rate reductions, equivalent reductions of CO₂ would have totaled over 700 Gg.

CONCLUSIONS and FUTURE WORK

- reducing spring wheat yield.

Acknowledgements: Cynthia Gonzalez, Indalecio Galvez, Cathy McMinn, Iurii Shcherbak, Sergio Zuniga

• Daily N₂O emissions (Fig. 5) and soil inorganic N concentrations (Fig. 6) increased following N

• Total N₂O emissions (Fig. 7 a-d) and average soil inorganic N concentrations (Fig. 7 e) increased with increasing N fertilizer rate in a non-linear manner.

• Grain yield did not increase with increasing N rate above 120 kg N ha⁻¹ in 2013 and 200 kg N

• Grain N yield increased with increasing N rate up to 200 kg N ha⁻¹ in 2013 and 2014 (Fig. 8b). • Fertilizer N use efficiency decreased with increasing N rate above 120 kg N ha⁻¹ (Fig. 8b). • N₂O emissions increased substantially after spring wheat yield and biomass reach annual

Yield / Biomass (kg)

Fig. 9. Total N₂O emissions vs. a) grain yield, b) grain N yield, c) biomass, and d) biomass N

• Large reductions in N₂O emissions at the field and regional scale can be achieved without

We will explore opportunities for Yaqui Valley farmers to take advantage of global C markets, to generate income from any improved N management practices they adopt.