

Transitioning Cereal Systems to Adapt to Climate Change

November 13-14, 2015

Agricultural information supply chains – drivers and directions

John Kirkegaard Senior Principal Research Scientist CSIRO, Australia

Peter Fitch

Interoperable Systems Team Program Leader CSIRO, Australia **Innovations in Australian** mixed cropping under climate change

Dr JA Kirkegaard

GRDC Grains Research & Development Corporation Your GRDC working with you

Funded through Award #2011-68002-30191 from USDA National Institute of Food and Agriculture

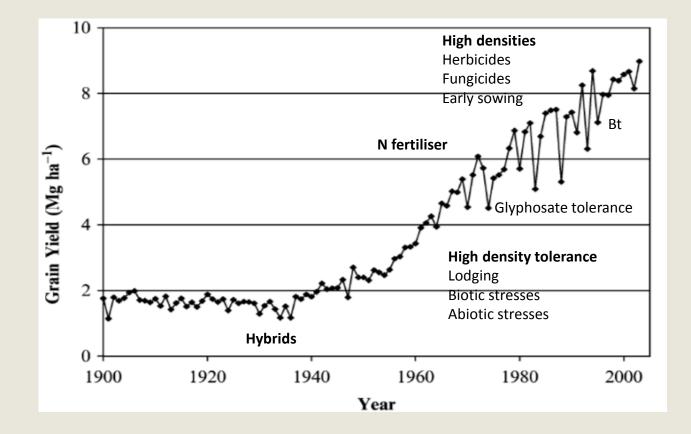
Transitioning Cereal Systems

to Adapt to Climate Change

November 13-14, 2015

An early agricultural revolution.....

The Norfolk system (Young 1771)


- (1) enclosures without Government assistance
- (2) use of marl (lime) and clay (known to Romans)
- (3) rotation of crops (Ancient Greeks)
- (4) culture of turnips, hand hoed (in rows) (Chinese in 6th century)
- (5) culture of clover and rye (Ancient Greeks)
- (6) long leases
- (7) large farms

4 course rotation [turnips (for fodder) - wheat/barley – clover/rye – wheat/barley]

"individual components of the revolution had a long history but the synergistic interactions in the Norfolk system made it such an effective agent of improvement"

in Evans LT (1998) Feeding the 10 Billion

US Maize – a modern agricultural revolution..

"On average, about 50% of the increase is due to management and 50% to breeding. The two tools interact so closely that neither of them could have produced such progress alone."

Duvick (2005) Advances in Agronomy 86

The bad old days....

G x E

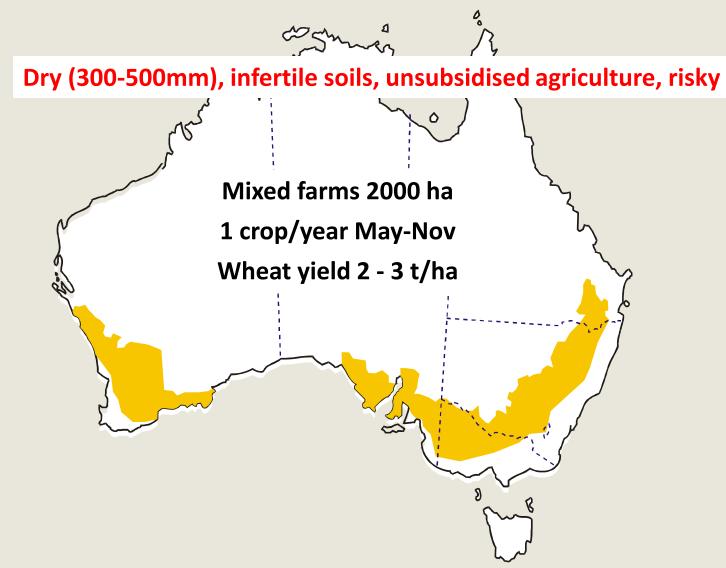
Molecular biology Plant cell biology Crop physiology

Genetics Plant breeding E x M

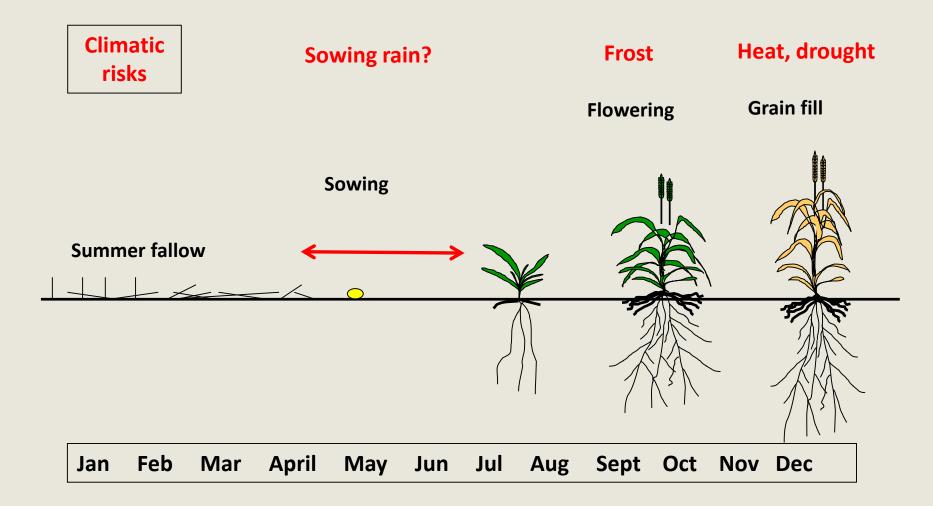
Farmers Consultants Input resellers

Agronomy Farming systems

A better way....


Molecular biology Plant cell biology Crop physiology Farmers Consultants Input resellers

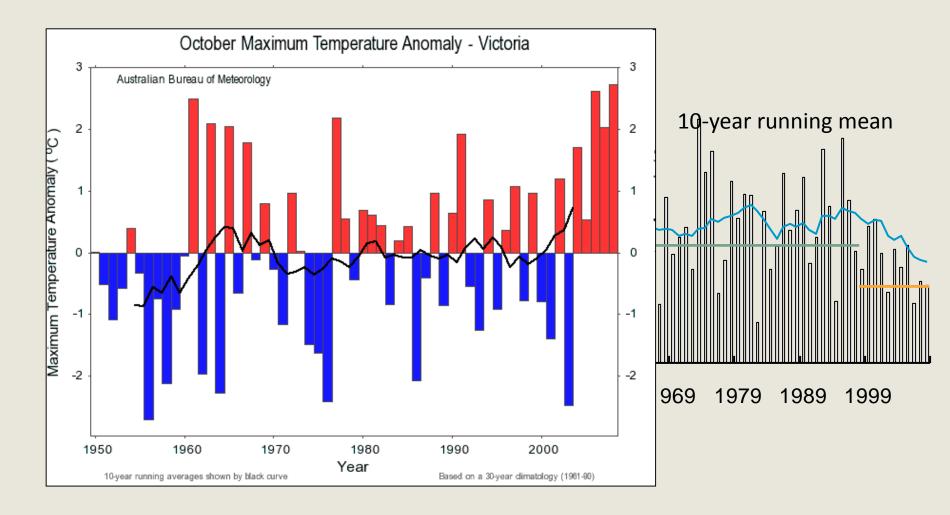
- Not which has delivered more, but how to identify best synergies
- What traits will suit the systems of the future (not just the climate)?
- What systems are needed to capitalise on new traits?


So what is the obstacle?

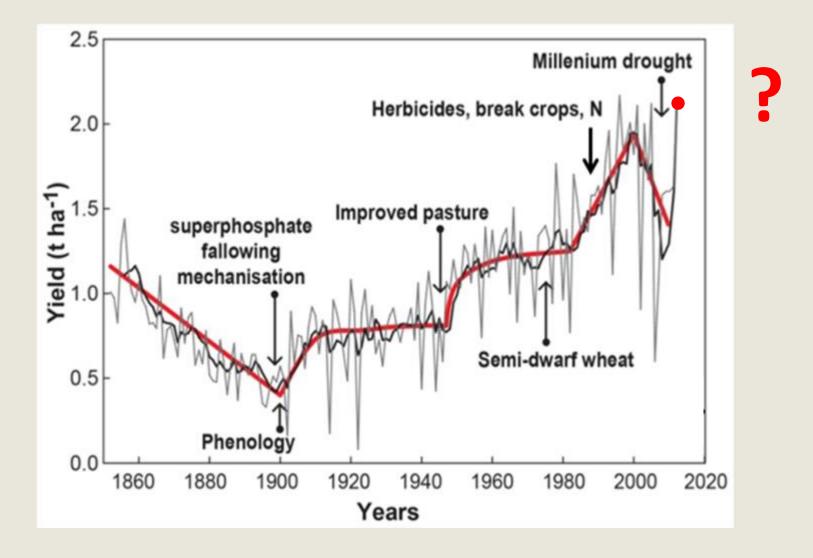
- Conceptual just how we think about things?
- Structural how we organise ourselves?
- Cultural how we approach research?
- Statistical how we analyse data?
- Institutional how we are rewarded?

Australian environment, soils and system

The cropping year...



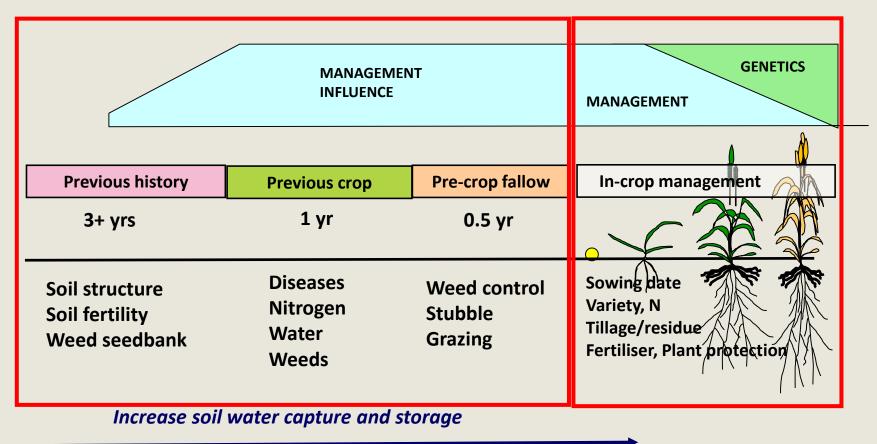
Modern, no-till cropping


Stubble-retained, disc-seeder, controlled-traffic, inter-row sowing, 2cm precision

Changing climate....

Australian wheat production

National WUE Initiative



16 regional farmer groups

- 1. WA Sandplain
- 2. WA Central
- 3. WA South West
- 4. WA South Coast
- 5. EP Farm Systems
- 6. Lower Eyre Ag. Dev. Assoc.
- 7. Upper North FS
- 8. Hart Field Site Group

- 9. Mallee SFS
- 10. MacKillop Farm Management
- 11. Birchip CG
- 12. Southern FS
- 13. Riverine Plains
- 14. The University of Tasmania
- 15. Central West FS
- 16. FarmLink Research

A systems approach to water productivity

Crop vigour/reduce evaporative loss

Canopy management/harvest Index

Kirkegaard and Hunt (2010) J. Exp. Bot. 61, 4129-4143

Predicted management synergies

Baseline Scenario (Kerang, Victorian Mallee)

Continuous wheat, grazed weedy fallow, burn/cultivate, sow > 25 May (1980s)

Baseline Mean Wheat Yield = 1.6 t/ha

System change	Mean Yi	eld (t/ha)
	Single effect	Additive effect
1. No-till	1.84	1.84
2. Fallow weed control	2.37	2.80
3. Pea break crop	1.76	3.45
4. Sow earlier (from 25 April)	2.10	4.01
5. Long coleoptile wheat (sow 25 April)	1.45	4.54

Kirkegaard and Hunt (2010) Journal Experimental Botany 61, 4129-4143

Management and genotype synergy

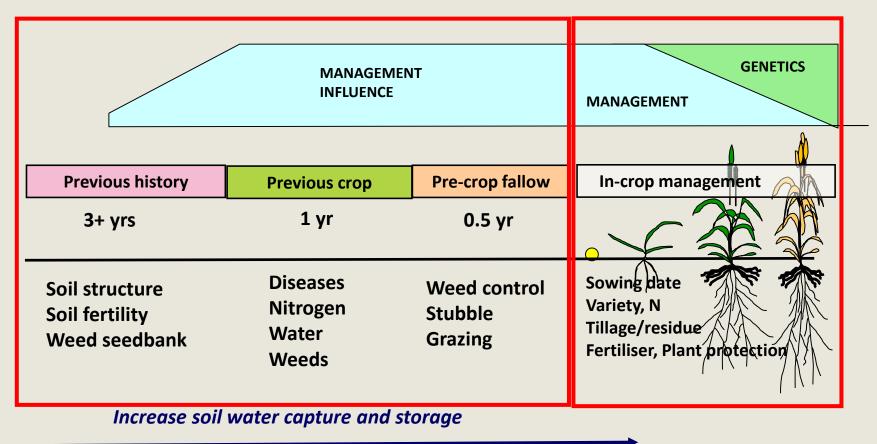
Capitalising on early sowing opportunities to optimise water use

Kirkegaard and Hunt (2010) Journal Experimental Botany 61, 4129-4143

Under climate change (2000 to 2009)

Baseline Scenario (Kerang, Victorian Mallee)

Continuous wheat, grazed weedy fallow, burn/cultivate, sow > 25 May (1980s)


Baseline Mean Wheat Yield = 1.6 t/ha Millen

Mil	leni	ium	Dro	ught

System change	Mean Yield A	Additive (t/ha)
	1962-2009	2000-2009
1. No-till	1.84	1.65
2. Fallow weed control	2.80	2.69
3. Pea break crop	3.45	3.20
4. Sow earlier (from 25 April)	4.01	3.52
5. Long coleoptile wheat (sow 25 April)	4.54	4.46

Kirkegaard and Hunt (2010) Journal Experimental Botany 61, 4129-4143

A systems approach to water productivity

Crop vigour/reduce evaporative loss

Canopy management/harvest Index

Kirkegaard and Hunt (2010) J. Exp. Bot. 61, 4129-4143

Four linked research Themes

1. Break crops and crop sequence

2. Summer fallow management

3. Managing in-season water-use

4. Managing variable or constrained soils

Theme 2 - Summer fallow management

• Fallow weed control – important?

6 regional groups across all 4 mainland states

• Sheep grazing – soil damage?

Theme 2 - Summer fallow management

• Pre-experimental modelling (37 sites)

Summer rainfall contributes 33% (1 t/ha) to yield (0.1 to 2.0 t/ha)

Experimental validation (20 experiments, 6 regional groups)
Strict weed control, stubble > 70% cover

Extra 37mm water and 44 kg N/ha

Rapid adoption

Low risk strategy; Widely and rapidly adopted \$5.70 return on \$1 investment

Hunt and Kirkegaard (2011) Crop and Pasture Science 62, 915-929

Theme 3 – Managing in-season water use

• Strict summer weed control, stubble >70% cover

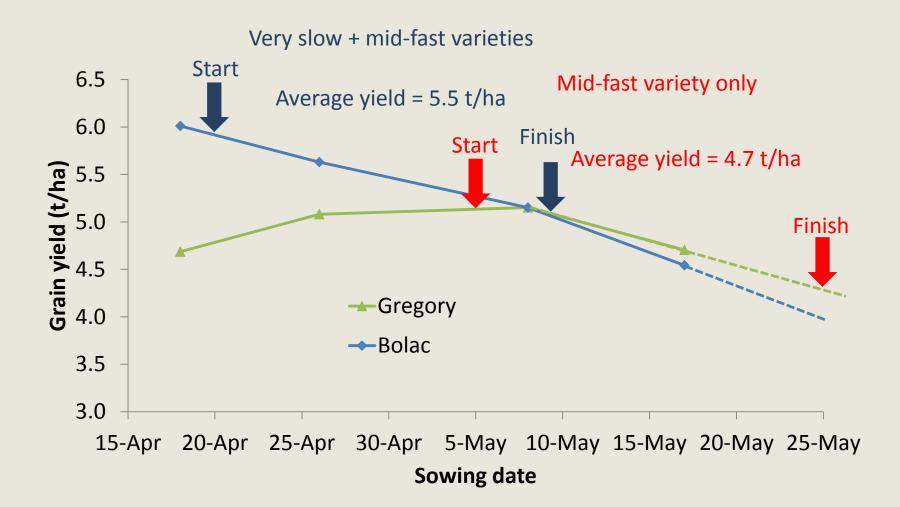
In 20 experiments, extra 37 mm water and 44 kg N/ha = (\$5.70 return)

- Early sowing of later-maturing wheat (same flowering window) Deeper roots, reduced evaporation, higher yield potential
- Wider rows/lower density and deferred N to maintain high HI Avoid excessive early biomass from early sowing
- Whole-farm multiplying effect from improved timeliness Increases in whole farm wheat yield of **11 to 47%**

Experiment 2012 - 177 mm rainfall

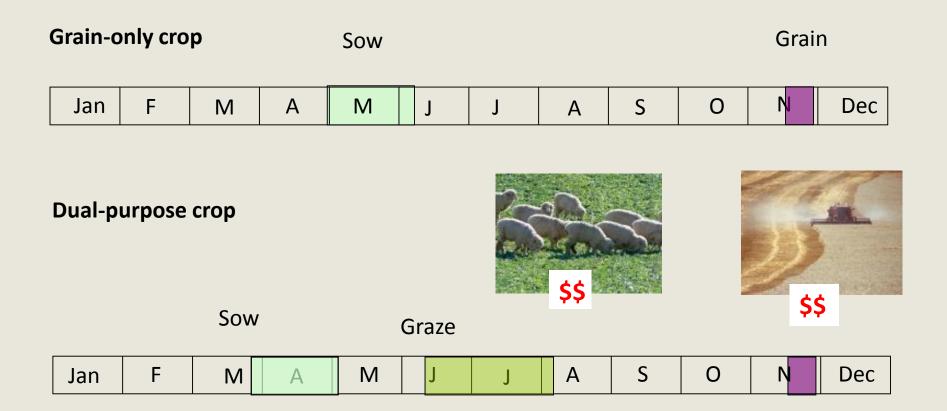
• Yield increase 0.6 to 1.9 t/ha, \$562/ha increase in gross margin

Grain yield (t/ha)	50 plants/m ²	100 plants/m ²
EGA Eaglehawk (18 April)	5.9*	6.1
Bolac (26 April)	5.8	5.5
EGA Gregory (8 May)	5.1	5.2
Lincoln (17 May)	4.3	4.0
P-value	0.0)34
LSD (p=0.05)	0	.3


• Deeper roots, less evaporation, better water use, higher yield potential

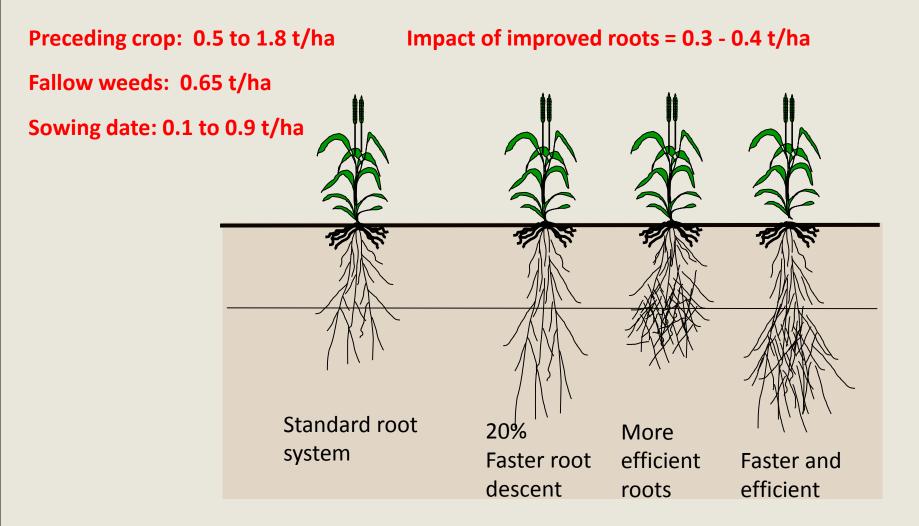
Yield increase scales up at whole-farm level

Kirkegaard et al., (2014) Crop and Pasture Science 65, 583-601.

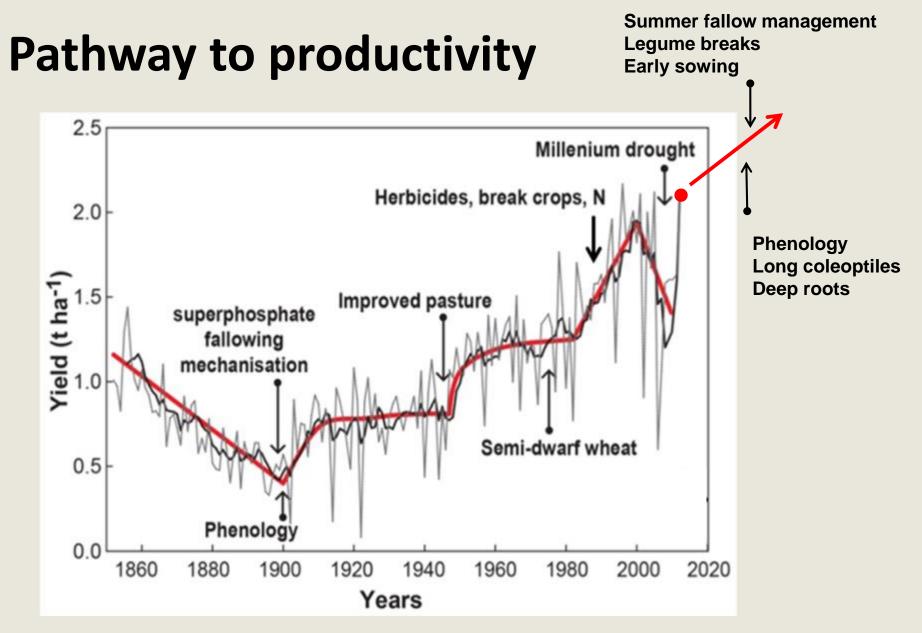

Whole-farm benefits

Whole-farm yield increase 11 to 47%

Demonstrated benefits to WUE >10%


Theme	Innovation	WUE Increase
1	Break crops	16 to 83%
2	Summer weed control	60%
3	Early sowing	21 to 33%
3	Wider rows	-6 to -13%
3	Irrigation timing	12 to 23%
3	Disease control	20 to 25%
4	Variable N rates	up to 91%
4	Responsive systems	22%
4	Gypsum	15 to 54%
4	Subsoil manuring	28%
4	Mouldboard/spade	20 to 80%

Earlier-sown crops can also be grazed!



Dove and Kirkegaard (2014) J. Sci. Food Agric. 94, 1276-1283

Improved roots interact with management

Lilley and Kirkegaard (2011) Field Crops Research 122, 118-130

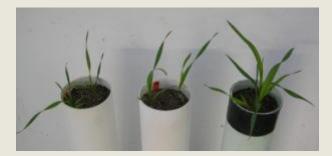
Achievements on farm?

Elements of success

- Industry and growers involved from the outset
- Adopted a **G x E x M** approach at system level
- Multi-disciplinary, but linked to a non-disciplinary goal
- Effective "integrators" needed; valued for broad knowledge
- Longer-term funding horizons

All traits interact with management

Long root hairs = PUE



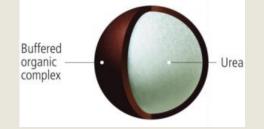
G

X

M

Early Vigour = WUE/NUE

Restricted tillers = WUE



Wasteful tillers

Fewer wasteful tillers Larger ears Larger grains

Precision placement Formulation Weed management N uptake Grazing

Row spacing Inter-row sowing

Ultimately the pathway to impact is personal

- Conceptual think more broadly GxExM
- Structural reward "integrators" as specialists
- Cultural partner for impact
- Statistical consider the interactions
- Institutional impact, not "impact-factor"

REACCH Regional Approaches to Climate Change – PACIFIC NORTHWEST AGRICULTURE

Thank-you

2009

GRADC Grains Research & Development Corporation

CSIRO

Thank you!

University of Idaho

United States Department of Agriculture National Institute of Food and Agriculture

Pacific Northwest Farmers Cooperative

Monsanto

