

Transitioning Cereal Systems to Adapt to Climate Change

November 13-14, 2015

Breeding for tolerance to heat and other climatic stresses for lower latitudes worldwide

Kulvinder Gill Professor Washington State University

Feed the Future Innovation lab: Improved Wheat for Heat Tolerance and Climate Resilience

Kulvinder S. Gill

Washington State University

Develop high-yielding, heat-tolerant wheat cultivars for the Indo-Gangatic Plains

CRW: Climate Resilient Wheat

Project partners

- Washington State CCSU, Meerut
- DWR, Karnal GBPU, Pantnagar
- Kansas State
- Metahelix
- Dupont-Pioneer
- RAU, Pusa

- JK Seeds
 - NBPGR
- PAU, Ludhiana
- IARI, Delhi & Wellington

CRW: Climate Resilient Wheat

<u>Specific Objectives</u>

- 1. Develop heat tolerant varieties using marker assisted background selection and forward breeding approaches: Acurate phenotyping, QTLs, enzymatic markers, fast breeding methods
- User-friendly markers for heat tolerance: QTLs, physiological markers, biochemical markers
- 3. Pyramid genes with complementary mechanisms of heat tolerance: Doubled-haploid approach, Objective 4 critical for this objective
- 4. Understand physiological mechanisms of heat tolerance: Study genetic, physiological, biochemical, and epigenetic mechanisms controlling heat tolerance
- 5. Scientist training and exchange: Exchange and collaboration (senior scientists), training (younger scientists), and PhD student training.. Younger scientists are a major focus of the project.

Feed the Future Innovation 596 Climate Resilient Wheat

SCALING UP AND LINKAGES WITH OTHER INNOVATION LABS

- Heat Screening Methods
- Heat tolerant germplasm
- Heat tolerant varieties
- Markers/Enzymatic assays/other screening tools
- Relationship between heat and drought tolerance
- Effect of terminal heat on grain quality
- Novel breeding and genotyping approaches
- Heat tolerance vs disease severity
- Others?

CRW: Climate Resilient Wheat

Breeding strategy to develop heat tolerant varieties

- 1. Evaluate cultivated wheat germplasm to select 10 donor lines
- 2. Select a recurrent parent with highest yield potential and wide adaptation
- 3. Simultaneous detection and utilization of QTL
- 4. Forward breeding to increase yield over the recurrent parent
- 5. Gene pyramiding to combine genes with complementary gene action **CRW: Climate Resilient Wheat**

Donor Selection

- Select known heat tolerant material from around the world: Selected 75 lines
- Evaluate by multi-location field, as well as controlled condition screening for heat tolerance
- Enzyme thermal stability tests on the donor and recurrent parents
- Select 10 most heat tolerant lines with <u>complementary heat tolerance mechanisms</u>
 CRW: Climate Resilient Wheat

Commonly used physiological Traits

- Canopy Temperature Depression (CTD)
- Stomatal conductance
- Grain filling duration (GFD)
- Membrane thermo-stability (MT)
- Chlorophyll content and fluorescence
- Stem reserve mobilization

Reliability and reproducibility issues

CRW: Climate Resilient Wheat

Heat tolerance mechanisms in wheat

Sugar transport

Photosynthesis

Enzymes/protein Selected for physiological and molecular studies

- 1. AGPase- Meerut
- 2. Sucrose synthase (Sus) -- Pantnagar
- 3. Starch synthase and branching (SBE) RAU
- 4. Alpha amylase PAU
- 5. Phosphoglucomutase (PGM) IARI
- 6. Phosphglucoisomerase (PGI) NBPGR
- 7. Rubisco activase WSU
- 8. Sucrose phosphate synthase (SPS)- DWR
- 9. HSP101 WSU
- **10.Heat shock factors**
- 11. Catalase and superoxide dismutase (SOD)
- 12. Glutathione-S-reductase
- 13.Glutamate decarboxylase makes GABA, a signaling molecule and a metabolite in stress tolerance.

Special thanks to Kanwarpal and Raj

Variation for Root length in the AM population

Parameters	Range	Genotypes	LSD
Root depth (cm)	45 -187	KSG 158, KSG 206	68
Total root length (cm)	720 - 7112	KSG 183, KSG 233	3066
Total surface area of roots (cm2)	85 - 1126	KSG 183, KSG 233	552
Total root volume (cm3)	0.8 - 15	KSG 183, KSG 241	8.7
Root dry weight (g)	0.10- 4.9	KSG 25, KSG 273	0.71
Shoot dry weight (g)	0.10 - 4.3	KSG 89, KSG 184	2.6
Root-shoot ratio	0.01 - 7.8	KSG 78, KSG 195	1.7
Plant height (cm)	7.5 - 60	KSG 160, KSG 19	16

Effect of temperature on germination

Effect of temperature on coleoptiles length

Results summary of initial screening of heat tolerance donors

BLUE – HIGHLY Susceptible, no seed set

RED - Susceptible, 0.1 to 0.49

GREEN – Tolerant, 0.67 to 0.88

Spike Weight

Photosynthesis Studies

- Wheat a C_3 species, has no mechanism to concentrate CO_2 to chloroplast
- Converting light energy into biomass at 4.3% efficiency
 - Light energy can become:
 - 1. Emitted (energy quenched)
 - 2. Dissipate as heat (non-photochemical quenching [NPQ])
 - 3. Chlorophyll fluorescence
- Net photosynthetic rate 15-40 (CO_2 assimilated per unit leaf area)
- Optimal temperatures 15-25°C

Effect of heat on photosynthesis

- Instability of the 70s chloroplastic ribosomes
- RUBISCO
 - Decreased solubility of CO₂
 - RUBISCO affinity for CO₂ decreases
 - Photorespiration increases
 - RUBISCO inactivation
 - RuBP pool decreases
- ATP synthesis (uncoupling), ATP/e⁻ decreases
 - Disruption of e⁻ transfer of water to reaction center
- PSII
 - Heat inactivation
 - Disturbance of lateral distribution of pigments in photosystems
 - Irreversible blockage of reaction (basal fluorescence [F_o] rises)

Enzymes/protein targeted for heat tolerance

- Rubisco Activase
- HSP101

The Heat Shock Proteins

Model of HSP101 chaperone activity

http://people.biochem.umass.edu

Wheat HSP101/ClpB

- Three isoforms in hexaploid wheat
 - -101-A, 101-B, 101-C
 - Transcript/protein data
 - Not mapped
- Four isoforms in tetraploid wheat
 - 101B-A, 101B-B, 101C-A, 101C-B
 - Transcript/protein data
 - Mapped in chromosome 1 and 3

Rubisco Activase (RCA)

- Encoded in nucleus
- Translated in cytoplasm
- Functions at chloroplast
- 41-47 kDa
- Sensitive to Heat
- Regulated by Light and ATP/ADP
- Relatively abundant

Thank you!

University of Idaho

REACCH Regional Approaches to Climate Change – PACIFIC NORTHWEST AGRICULTURE

United States Department of Agriculture National Institute of Food and Agriculture

Pacific Northwest Farmers Cooperative

Monsanto

