

Transitioning Cereal Systems to Adapt to Climate Change

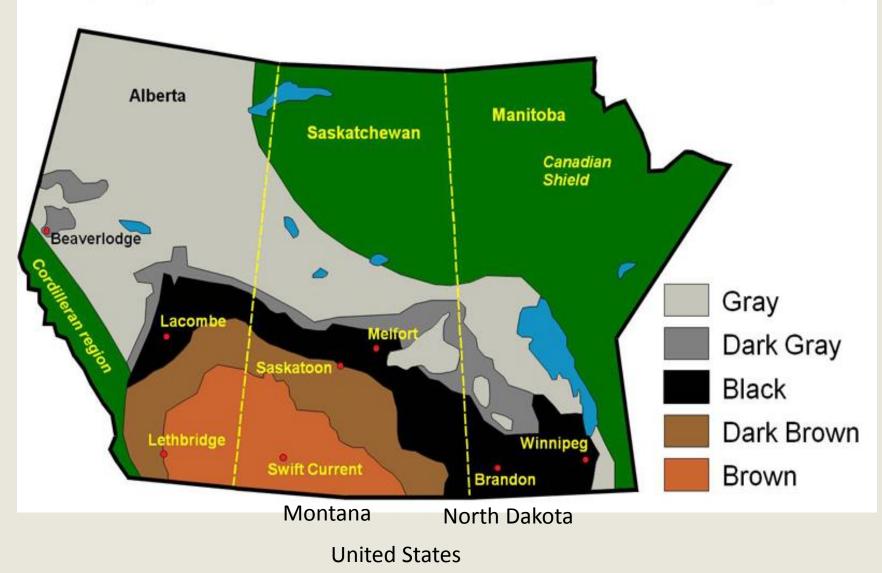
November 13-14, 2015

Constraining soilemitted GHGs from crop production on the Canadian semiarid prairies

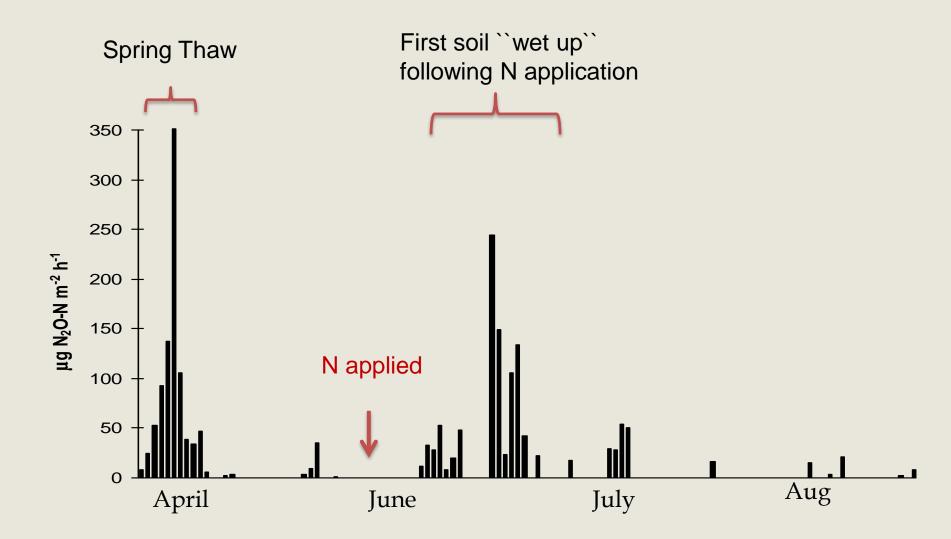
Reynald Lemke Research Scientist Agriculture and AgriFood Canada

Constraining Soil-Emitted GHGs from crop production on the Semiarid Canadian Prairies

R.L. Lemke¹ and R. Farrell² ¹ Agriculture & Agri-Food Canada, Saskatoon, Saskatchewan


² Department of Soil Science, University of Saskatchewan

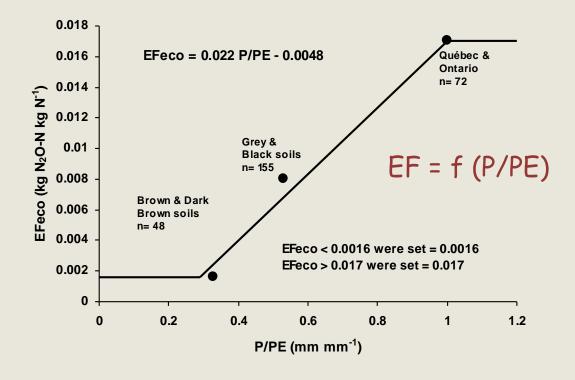
Sponsors logos in white box



November 13-14, 2015

Major soil zones of the Prairie Region

Seasonal Pattern of soil-emitted N₂O



Emission factor as a function of local climate

Soil_N₂O = Ninputs_N₂O x "modifiers"

Ninputs_N₂O = (Fertilizer N + Residue N + Manure N)*EF

EFeco = EF calculated specifically for each ecodistrict

(Source: Rochette et al., 2008)

Estimating N₂O Emissions: Canadian Semiarid Prairies

Soil_N₂O = Ninputs_N₂O x "modifiers"

Modifiers = Tillage, slope position, irrigation, soil texture

Reference situation = "a non-irrigated soil located in well-drained portions of the landscape under conventional tillage practices"

~ 80-90% data collected from Hard Red Spring Wheat

Crop Mix: Canadian Semiarid Prairies

- 2014 Estimated Seeded Acreages for Saskatchewan
 - > 38% spring wheat, (24% hard red spring wheat)
 - 36% oilseeds (31% canola)
 - > 17% pulses (lentil, field pea, chickpea)
 - > 7% summerfallow & "misc."
- Current Crop Sequences:
 - Oilseed-Cereal or Pulse-Cereal
 - Oilseed-Pulse-Cereal or Fallow-Oilseed-Cereal

Case Study: Pea-Canola Frequency Study

- Field experiment established in 1998
- Treatments with various crop sequences of field pea (Pisum sativum L.), wheat (Triticum aestivum L.) and canola (Brassica napus L.)

W [±N]	 hard red spring wheat grown each year with or without added N
Р	- pea grown every year
P-W	- pea-wheat
C-W	- canola-wheat
P-C-W	- pea-canola-wheat

All phases of each rotation present each year

Pea-Canola Frequency Study

- Nitrogen (urea) side banded at 75, 65 and 7.5 kg N ha⁻¹ for canola, wheat, and pea, respectively
- Plexi-glass non-flow through, non-steady state chambers (22 cm × 45.5 cm and 15 cm high)
- The annual precipitation was 385, 285 and 637 mm in 2008, 2009 and 2010 respectively. (30-yr mean = 360 mm)

Cumulative N₂O and Yield-Scaled N₂O from selected crop-residue combinations Scott, Saskatchewan, Canada

Direct N ₂ O			Yield-Scaled N ₂ O		
Residue Type	Crop Grown	3-year cumulative (g N₂O-N ha ⁻¹)	Residue Type	Crop Grown	3-yr Cumulative (g C/g N ₂ O-N)
С	W	2120 a	Р	W	0.33 a
W	С	1440 b	Р	С	0.28 ab
W	W	1360 b	Р	Р	0.28 ab
W	Р	1270 bc	W	Р	0.27 ab
Р	W	1120 bc	W (+N)	W (+N)	0.22 bc
W(-N)	W (-N)	1110 bc	W (-N)	W (-N)	0.21 bc
Р	С	1100 bc	W	С	0.20 bc
Р	Р	990 c	С	W	0.16 c

Cumulative N₂O and Yield-Scaled N₂O on a rotational basis: Scott, Saskatchewan

N ₂ O Loss			Yield scaled N ₂ O Loss		
Rotation	3-yr cumulative		Rotation	3-yr cumulative	
	(g N₂O-N ha⁻¹)			(g C / g N ₂ O-N)	
C-W	1780 a		P-W	0.31 a	
W	1360 ab		Р	0.28 ab	
P-W	1190 bc		W	0.22 bc	
W (-N)	1110 bc		W (-N)	0.21 c	
Ρ	990 c		C-W	0.17 c	

Summary

- On the Canadian semiarid prairies the magnitude of emissions largely governed by N inputs and soil water status
- Crop sequence/crop type does influence "per area" and "yield-scaled" emissions
- Including a pulse in the crop sequence benefits the overall rotation on both "per area" and "yield-scaled" emissions
- Including an oilseed, particularly canola, in the crop sequence "costs" the overall rotation on both "per area" and a "yield-scaled" emissions

Future Needs...

- What is the influence of crop type (e.g. winter wheat), particularly long-term influence?
- Spring thaw period who's doing what, when and why?
- Can we manage cropping systems to stimulate N₂O consumption?
- What is the appropriate intensity metric to assess emissions?
- Continued development of models, particularly for scenario testing
- Concerted, integrated effort to identify/develop mitigation and "environmentally optimal" crop production strategies

Transitioning Cereal Systems to Adapt to Climate Change

REACCH Regional Approaches to Climate Change – PACIFIC NORTHWEST AGRICULTURE Thank you to our sponsors:

NOTE: Conference personnel may insert this slide at the end of your presentation, populates with our sponsor logos.

Thank you!

University of Idaho

United States Department of Agriculture National Institute of Food and Agriculture

Pacific Northwest Farmers Cooperative

Monsanto

