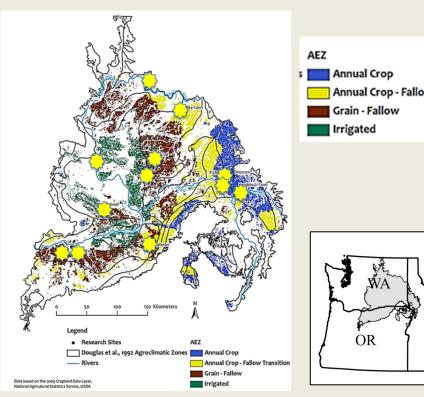


Cropping system improvements and innovation

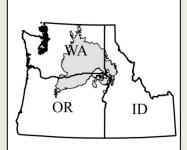
William L Pan

Professor and Extension Specialist Washington State University

Global Cropping Systems Designs for Mitigating and Adapting to Climate Change Dr W. Pan. Washington State University


Dr WL Pan, Washington State University moderator

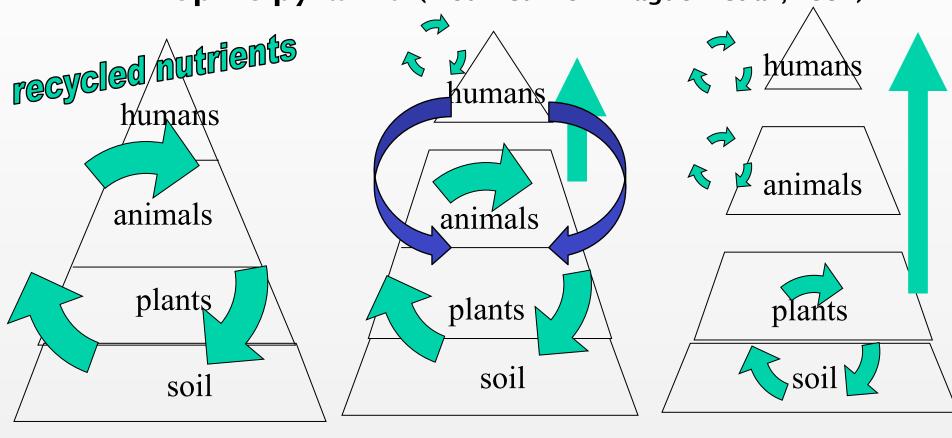
- ☐ Rotational Designs
- □ Nutrient balances, management
- ■Water Use
- ☐ Conservation Systems
- ☐ Livestock/Crop Integration



Inland Pacific Northwest US Cropping Systems Research

PNW experiments distributed amongst 4 zones representing annual available water gradient from 200-600 mm rainfed + irrigated

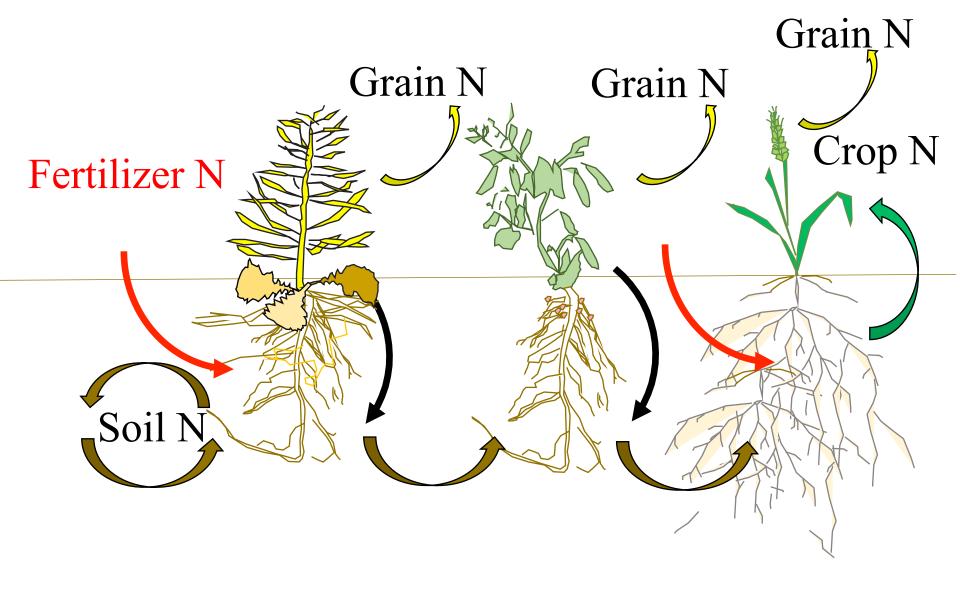
Major AECs defined:


- 1. Annual Cropping (<10% fallow)
- 2. Annual Crop-Fallow Transition (10-40% fallow)
- 3. Grain-Fallow (>40% fallow)
- Irrigated (continuous cropped circles

3 million ha, 27% fallow, 45% wheat

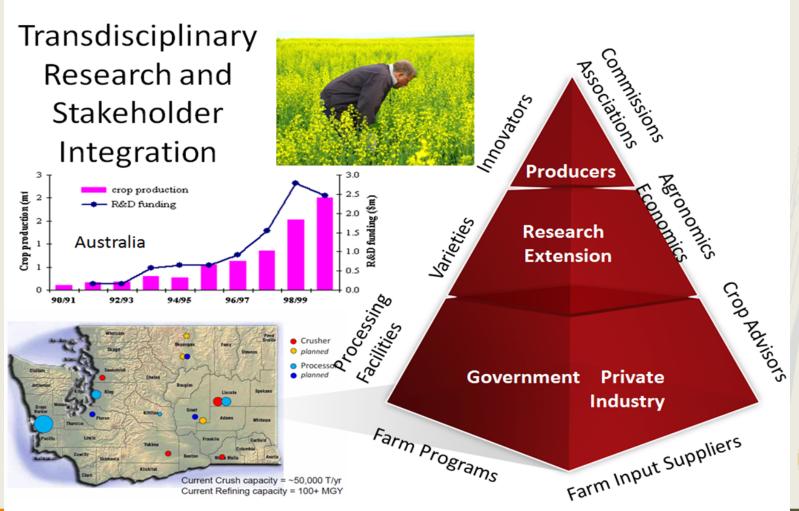
Shift in Nutrient Cycling

Agricultural Changes in Nutrient Cycling
Trophic pyramid (modified from Magdoff et al., 1997)


- 1. Primitive agriculture
- 2. Urbanization
- 3. Industrial Agriculture
- 4. Livestock/crop re-integration?

Climate Change Need Areas

- ☐ Intensification and diversification
- ☐ Ecophysiologically and economically driven agronomic systems design
- \square C, N, H₂O balances
- □SOM quality and quantity
- ☐Subsoil quality



AEZ-specific Alternative Systems; Win-Win Scenarios

AEZ	Convention	Alternative rotation	Alternative res/soil mgt	Win – win GHG NUE \$ pest Red WUE cntrl			
High rainfall	RTill 1.WW 2.SW 3.Leg	1.WW 2.5C 3.Leg	DS, precison nutr. & straw harvest	У	y	+/-	У
Intermediate rainfall	RTill 1. WW 2. SW 1. WW 2. F	Flex 1.WW/WC/WL 2.SC/SL/F 3.F	DS, prec. N, organic supplement s	У	У	+/-	У
Low rainfall	RTill 1. WW 2. F	1.WW/WC/WL 2. Chem F	DS, stripper header, organics	У	У	+/-	У
Irrigated	Till 1WW 2.Corn 3.Potato	1.WW-CC- 2.corn-CC- 3. Potato 1. FP-WCF 2. WCG-SC 3. Potato	RT/DS, green manure CC, straw harvest, prec. nutr.	У	У	+/-	+/-

Case Stories: System Wide New Crop Adaptation

Thank you!

University of Idaho

United States Department of Agriculture National Institute of Food and Agriculture

