

### Greenhouse Gas Mitigation Potential of Dryland Cropping Systems in the U.S. Great Plains

Mark Liebig USDA-ARS Mandan, ND

# **Presentation Overview**

### **Great Plains Cropping Systems**

- Region description
- Historical SOC trend
- Synthesis of  $\Delta \text{SOC}$  and  $\text{N}_2\text{O}$  flux

### The Future

• NCA Projections for the U.S. Great Plains

**GHG Mitigation Options** 

Research Gaps/Activities





# U.S. Great Plains: Description

### Geography

 Large area, encompassing ≈150 Mha, 10 states, and multiple ecoregions

### Climate

- 200-750 mm MAP (W→E)
- 4-20°C MAT (N→S)
- 1100-1750 PET (N→S)

### Native Vegetation, Soil

- Mixed-, short-grass
- SOC accumulation; Calcification

### Land use

States Department of Agricultu

Agricultural Research Service

USDA

- 90% agriculture
- ≈45 Mha cropland (≈75% dryland)



# U.S. Great Plains: Conversion and Soil C

# Conversion of native vegetation to dryland cropping

17 sites (MT to TX), surface 30.5 cm

Mean SOC loss:

- 42±11%
- 7.7±5.2 g C kg<sup>-1</sup>

SOC loss by sub-region:

- 39-43%
- 6.5-10.5 g C kg<sup>-1</sup>





## Cropping System Evolution in Great Plains

- Conventional tillage
- Frequent use of fallow



- - Weed and Residue Management Technology -
  - Reduced- and No-tillage
  - Flex/Annual crop rotations





### Reversing SOC Decline on Cropland? Dryland Cropping Systems



**Agricultural Research Service** 

ed States Department of Agricult

USDA

### Achieving Neutral GWP No-tillage, Continuous Cropping

| Location      | SOC<br>accrual                                                                                   | CH₄ uptake | N fertilizer<br>production/<br>application | Farm<br>operations | Calculated N <sub>2</sub> O<br>emission to achieve<br>neutral GWP |                                         |
|---------------|--------------------------------------------------------------------------------------------------|------------|--------------------------------------------|--------------------|-------------------------------------------------------------------|-----------------------------------------|
|               | kg CO <sub>2</sub> equiv. ha <sup>-1</sup> yr <sup>-1</sup> g N ha <sup>-1</sup> d <sup>-1</sup> |            |                                            |                    |                                                                   |                                         |
| Mandan,<br>ND | -843                                                                                             | -21        | 247                                        | 85                 | 532                                                               | 3.1                                     |
| Sterling, CO  | -440                                                                                             | -25        | 383                                        | 85                 | -3                                                                |                                         |
| Temple, TX    | -587                                                                                             | -46        | 298                                        | 85                 | 250<br>Adapted                                                    | <b>1.5</b><br>from Liebig et al. (2009) |



### N<sub>2</sub>O flux No-tillage, Continuous Cropping



United States Department of Agricultural Research Service

# U.S. Great Plains (looking forward)

**Climate Change Impacts in the United States** 

#### CHAPTER 19 GREAT PLAINS

Convening Lead Authors Dennis Ojima, Colorado State University Mark Shafer, Oklahoma Climatological Survey

#### Lead Authors

John M. Antle, Oregon State University Doug Kluck, National Oceanic and Atmospheric Administration Renee A. McPherson, University of Oklahoma Sascha Petersen, Adaptation International Bridget Scanlon, University of Texas Kathleen Sherman, Colorado State University





#### **Recommended Citation for Chapter**

Shafer, M., D. Ojima, J. M. Antle, D. Kluck, R. A. McPherson, S. Petersen, B. Scanlon, and K. Sherman, 2014: Ch. 19: Great Plains. *Climate Change Impacts in the United States: The Third National Climate Assessment*, J. M. Melillo, Terese (T.C.) Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 441-461. doi:10.7930/J0D798BC.

"Always in motion is the future."



Yoda

# **Precipitation Projections**

Seasonal change

Winter/spring precipitation projected to increase in the north

Days with heavy precipitation to increase in north

• Dry spells

Minimal change in north Longer in south





Shafer et al. (2014); P. 445

## **Temperature Projections**

Days >38°C (100°F)
 2x in the north
 4x in the south

- Nights >16°C (60°F)
  2x in the north
  24 d increase in growing season
- Nights >27°C (80°F) 4x in the south



ed States Department of Agricultu

USDA

# Projections suggest potential for greater...

### ...denitrification in Northern Plains

- Improve NUE through breeding and management
- Cropping interventions
- Nitrification/Urease inhibitors
- Reduce proportion of high N-demanding crops

# ...SOC Loss in Central and Southern Plains

- Increase root/residue input through breeding and management
- Increasing permanent cover

USDA

States Department of Agricultu

Agricultural Research Service



Bailey, 1995



# (Re)Incorporation of Perennial Phases Biofeedstock Production

- Large root biomass; Substantial SOC accrual
- Low- to moderate N<sub>2</sub>O emission (though broad validation in region is lacking)
- Net negative GHG flux (Parton et al., 2015)
- Significant co-benefits:
  - ➤ Wildlife habitat
  - ➤ Water regulation/filtration
  - ➢ Erosion protection
  - Dynamic use (forage)





# GHG Mitigation: Research Gaps/Needs

# Renewed look at herbaceous grass options for the Great Plains

- Feedstock candidates for sub-regional adaptation (e.g., Intermediate wheatgrass).
- Management strategies for transitioning between perennial/annual phases
- More intensive quantification of performance/attributes







# **USDA-ARS Network Activities**

Greenhouse Gas Reduction through Agricultural Carbon Enhancement Network (GRACEnet)

### *Greenhouse Gas Reduction through Agricultural Carbon Enhancement*

- Goal: Identify and develop agricultural strategies to enhance soil carbon storage, reduce greenhouse gas emission, and improve environmental quality
- 33 experimental sites, 27 states
- Common methods, treatment design, data management
- ARS Data Portal
- 2002-present



# USDA-ARS Network Activities

Resilient Economic Agricultural Practices (REAP)

# *Vibrant Economies Depend on Healthy Landscapes Built on Healthy Soils*

- Goal: Increase stakeholder awareness of soil health through research
- 36 experimental sites, 7 states
- Cross-location research
  - Stewardship of soil resources
  - Managing nutrients
- ARS Data Portal
- 2006-present





### USDA-ARS Network Activities Long-term Agroecosystem Network (LTAR)

### Long-term, Trans-disciplinary Science for Agriculture

- Goal: Ensure sustained production and ecosystem services from agro-ecosystems, and forecast and verify effects of environmental trends, public policies, and emerging technologies
- 18 experimental sites, 9 regions
- 'Common Experiment'
  - Agro-ecosystem productivity
  - Climate variability and change
  - Conservation & environmental quality
  - Socio-economic viability & opportunities
- 2012-present

United States Department of Agriculture

USDA



www.ars.usda.gov/ltar







REACCH Regional Approaches to Climate Change – PACIFIC NORTHWEST AGRICULTURE *Thanks for listening, and thank you to our sponsors:* 

USDA-NIFA REACCH University of Idaho Oregon State University CHS Washington State University Monsanto Pacific Northwest Farmers Cooperative



# Thank you!

University of Idaho











United States Department of Agriculture National Institute of Food and Agriculture



Pacific Northwest Farmers Cooperative

Monsanto

