

Transitioning Cereal Systems to Adapt to Climate Change

November 13-14, 2015

Increasing productivity in rain fed, semiarid systems by analyzing and remediating limiting factors

Bram Govaerts

Associate Director CIMMYT, Mexico

Increasing productivity in rainfed, semiarid systems by analyzing and remediating limiting factors

Bram Govaerts, Nele Verhulst and team

@BramACCIMMYT #4MasAgro b.govaerts@cgiar.org

International scenario

Storage

Big Data

Mobile

Social

Content

Risk

How CAN WE FEED 9 BILLION PEOPLE?

THE GLOBAL GOALS For Sustainable Development

La próxima despensa global Cómo América Latina puede alimentar al mundo

International scenario

THE GREAT BALANCING ACT

The world must achieve a "great balancing act" in order to sustainably feed 9.6 billion people by 2050. Three needs must be met at the same time.

🔆 WORLD RESOURCES INSTITUTE

A Global Food Company

"THE NEW CONSUMER"

LLOYD'S

Food insecurity a significant risk to "global society"

Food safety/security issues create "direct and indirect risks & opportunities for businesses"

Insurance can play a large role in risk mitigation/management as well as innovation/investment

March, 2014

FEAST OR FAMINE BUSINESS AND INSURANCE IMPLICATIONS OF FOOD SAFETY AND SECURITY

Lloyds food system shock scenario

Impacts

Integrated sustainable production

- Semi-arid, rainfed production systems: water = principal factor limiting crop productivity and risk factor
- Need to optimize rainfall use efficiency to cope with
 - heavy rainfall events
 - prolonged drought
- Further increase productivity by addressing other limiting factors like nutrient deficiencies
- Integration with a resilient the value chain
- Development of innovation networks

Conservation agriculture

- Based on three principles:
 - Minimal soil movement
 - Soil surface cover => rational
 - Crop rotation => economic
- Adapted to production system

The Four Principles of Conservation Agriculture Provide the Foundation to Develop, Validate and Deliver CA-based Crop Management Technologies

Appropriate Crop Management Component Technologies Must be Specifically Developed for Each Crop Production System

The Foundation for the Development of Suitable CA-based Crop Management Technologies

Long term trials

• in contrasting agro-ecological environments in Mexico

CA and soil quality

Rainfed conditions in Central Mexico

CA and soil quality

• Irrigated conditions in northwestern Mexico

Rainfed conditions in central Mexico

• Soil water content (0-60 cm) in 2009 season (with severe drought 30-83 days after planting)

Rainfed conditions in central Mexico

• Maize yield (t ha⁻¹ at 12% H_2O)

Management practice	2008	2009	1997-2009
ZT, Keep	7.88 (0.20) a	7.42 (0.63) a	5.65 (0.02) a
ZT, Remove	5.65 (1.26) a	3.63 (0.30) b	4.43 (0.27) b
СТ, Кеер	6.65 (0.11) a	2.71 (0.17) b	4.59 (0.05) b
CT, Remove	7.18 (0.96) a	3.28 (0.67) b	4.31 (0.23) b

Farmer practice

Conservation agriculture

(Verhulst et al., 2011 b)

Results from LTT

 CA increases yield compared to conventional practices as well as resilience

Results from LTT

• CA increases yield compared to conventional practices, and more so in more diverse crop rotations

Maize

Wheat

Yield: system × year interaction explained by climatic co-variables

Years: 1999-2009 Climatic variables: H= relative humidity Tmn= minimum temp Tmx= maximum temp R= radiation E= ET₀ P= precipitation

1, ..., **6**= Periods of the growing season $1 \approx$ emergence $2 \approx$ tillering $3 \approx$ stem elongation and booting $4 \approx$ head emergence $5 \approx$ flowering $6 \approx$ grain filling **VICIMMYT**

Optimize the second limiting factor

- Maize-wheat rotation and wheat monoculture
- Permanent beds (PB) and conventionally tilled beds (CB)
- 4 fertilizer treatments:

Trt	N dose (urea) at planting	N dose (urea) at V4/1 st node	Abbreviation
1	0 kg N/ha	0 kg N/ha	0 N
2	80 kg N/ha	0 kg N/ha	80 N planting
3	0 kg N/ha	80 kg N/ha	80 N V4/1 st node
4	40 kg N/ha	40 kg N/ha	40 N planting - 40 N V4/1 st node

Fertilizer experiment - maize

• NDVI: CB (grey) values decrease faster than in CA

Fertilizer experiment - maize

- Yield:
 - Under CB: low yields, fertilizer does not increase yield
 - Under CA:
 - Without fertilizer yield higher than under CB
 - Fertilizer application increases yield

Fertilizer experiment - wheat

• NDVI In 2012

In 2014

Fertilizer experiment - wheat

- Yield:
 - In 2012, few differences
 - In 2014 under CB: low yields, fertilizer does not increase yield
 - In 2014 under PB with monoculture: higher yield than CB & fertilizer increases yield; lower yield than with rotation (tan spot)
 - In 2014 under CA: higher yield than both other tillage-rotation practices & fertilizer increases yield

Research on the model per se

- Transfer-of-technology
- technology focus
- CA
- hub = 3 structures
- linear

- brokering
- actor focus
- sustainable intensification
- hub = network
- dynamic network

M&E4L → SDG

© Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © 2012-2015. Km. 45, Carretera México-Veracruz. El Batán, Texcoco CP 56130. Edo. de México. MEXICO

📀 👢 🕂 🚾 🔜

11:24 PM

6/15/2015

EN 🔺 🏴 🐯 🗊 ant 👀

Results on the ground

440.000 ha with

technologies and improved agronomic practices

1.000.000 ha with indirect influence

over 200.000 producers

21% women

Desulfurobacterium thermolithotrophum (AJ001049)

Mapping of Interventions

Knowledge Systems for Sustainability

To equip humanity with the ability to manage the complex risks emerging from mounting pressures on Earth's food, water, and energy systems, by mobilizing science and technology across multiple disciplines and across public, private and civil sectors to provide system-oriented, scaleappropriate, actionable solutions.

THE EARTH INSTITUTE COLUMBIA UNIVERSITY

Battelle The Business of Innovation

CIMMY

Photos: Yann Arthus-Bertrand

Core Product: Knowledge systems that allow us to scan for patterns, zero in on places, learn from our actions at scale

- Data, information, and knowledge assets
- Modeling of complex systems
- Learning systems
- Decisions about management that advance securities

Importable and exportable actionable insights shared between critical decision makers such that scalable, repeatable actions can be replicated

Borlaug Dialogue International Symposium

THE GREATEST CHALLENGE IN HUMAN HISTORY

CAN WE FEED 9 BILLION PEOPLE BY 2050?

La próxima despensa global Cómo América Latina puede alimentar al mundo

> UN LLAMADO A LA ACCIÓN PARA AFRONTAN DESAFÍOS Y GENERAR SOLUCIONES

Innovation

Inspiration

Intensification

44

CIMMYT

Thank you for your interest!

Thank you!

University of Idaho

United States Department of Agriculture National Institute of Food and Agriculture

Pacific Northwest Farmers Cooperative

Monsanto

