

Transitioning Cereal Systems to Adapt to Climate Change


November 13-14, 2015

Nitrous oxide fluxes from cropping soils in a semiarid region in Australia: A 10-yr prospective

Louise Barton Senior Research Fellow University of Western Australia

Transitioning Cereal Systems to Adapt to Climate Change in Semiarid Regions

Nitrous oxide fluxes from cropping soils in a semiarid region in Australia: A 10 year perspective

Louise Barton¹, Daniel Murphy¹, K. Butterbach-Bahl²

¹Soil Biology & Molecular Ecology Group, Institute of Agriculture, The University of Western Australia, Perth, Australia ²Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany.

Western Australian Grainbelt

- 12 million hectares of arable land
- Produces up to 40% of Australia's grain exports
- A semiarid climate, with winter-dominant rainfall and hot, dry summers
- ✓ <325–700 mm per year (<15–28 inches)</p>
- Cropping in winter; soils
 fallow at other times of
 the year

Highly Weathered Soils

Yellow/brown sandy duplex (Natric Haploxeralf, Typic Natrixeralf)

Surface 120 mm			
pH (0.01 CaCl ₂)	6.0		
С	0.98 %		
Ν	0.08 %		
Sand	93 %		
Bulk density	1.4 g soil cm ⁻³		
Represents 25% of WA grain-belt soils			

Nitrous oxide emissions measurement and observations

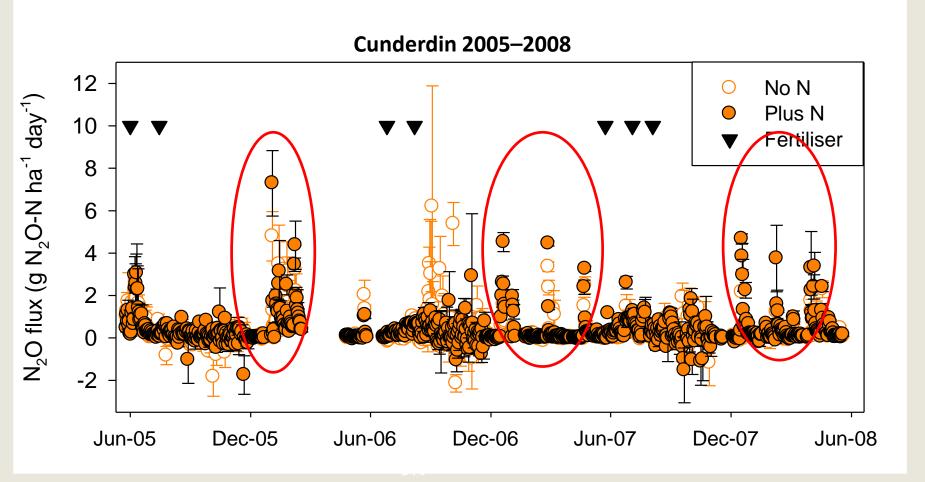
50 cm x 50 cm by variable height (15–95cm)

Land - Die

The state of the state of the second

Nitrous oxide emissions are low from coarse-textured soils

Location	Soil	Crop	N Rate (kg N/ha)	Annual Rate (kg N/ha)	EF (%)
Cunderdin	sand over	wheat	0	0.09	0.02
	clay	wheat	100	0.11	
Cunderdin	sand over	wheat	0	0.08	0.02
	clay	wheat	75	0.09	
Cunderdin	sand over	canola	0	0.08	0.06
	clay	canola	75	0.13	
Cunderdin	sand over	lupin	0	0.13	na
	clay	bare soil	0	0.13	
Wongan Hills	sand	lupin	0	0.04	na
		wheat	75	0.06	
Wongan Hills	sand	wheat	20	0.06	na
0		wheat	50	0.07	
Buntine	sand	canola	0	0.02	0.01
		canola	100	0.01	
Buntine	sand	barley	0	0.02	0.02
		barley	100	0.00	

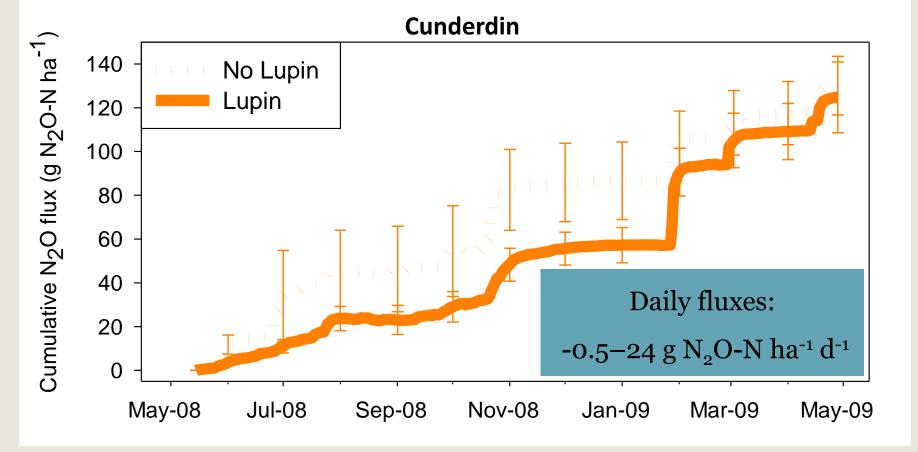

Source: Barton *et. al.* 2008. *Global Change Biology* 14: 177-192; Barton *et al.* 2010. *Global Change Biology Bioenergy* 2: 1–15; Barton *et. al.* 2011. *Global Change Biology* 17: 1153–1166; Barton *et. al.* 2013. *Agriculture, Ecosystems and Environment* 167: 23–32

Nitrous oxide emissions are low from coarse-textured soils

Location	Soil	Crop	N Rate (kg N/ha)	Annual Rate (kg N/ha)	EF (%)
Cunderdin	sand over	wheat	0	0.09	0.02
	clay	wheat	100	0.11	
Cunderdin	sand over	wheat	0	0.08	0.02
	clay	wheat	75	0.09	
Cunderdin	sand over	canola	0	0.08	0.06
	clay	canola	75	0.13	
Cunderdin	sand over	lupin	0	0.13	na
	clay	bare soil	0	0.13	
Wongan Hills	sand	lupin	0	0.04	na
		wheat	75	0.06	
Wongan Hills	sand	wheat	20	0.06	na
		wheat	50	0.07	
Buntine	sand	canola	0	0.02	0.01
		canola	100	0.01	
Buntine	sand	barley	0	0.02	0.02
		barley	100	0.00	

International default value: 1.0%; Australian value: 0.20%

"Largest" N₂O emissions occur following summer rainfall


Source: Barton et. al. 2008. Global Change Biology 14: 177-192; Barton et al. 2010. Global Change Biology Bioenergy 2: 1–15.

Does including grain legumes in our cropping rotations increase cumulative N₂O emissions?

Photo: Department of Agriculture and Food Western Australia, https://www.agric.wa.gov.au/lupins/crop-topping-pulse-crops

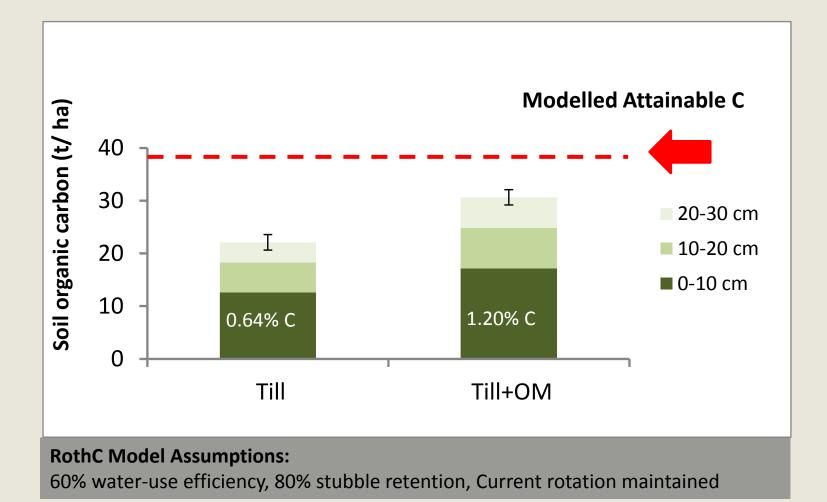
Grain legumes do not increase cumulative N₂O emissions

Source: Barton et. al. 2011. Global Change Biology 17: 1153–1166.

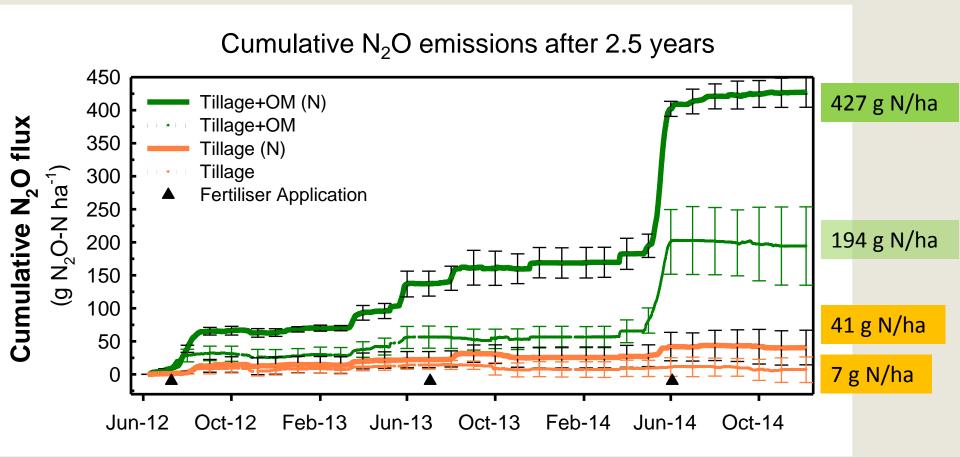
Grain legumes do not increase cumulative N_2O emissions

Wongan Hills

Rotation	Year 1	Year 2	Total
		kg N₂O-N ha⁻¹	
Lupin-wheat (20 kg N ha ⁻¹)	0.04	0.06	0.10 ^a
Wheat-wheat (125 kg N ha ⁻¹)	0.06	0.07	0.13 ^b


Source: Barton et. al. 2013. Agriculture, Ecosystems and Environment 167: 23–32

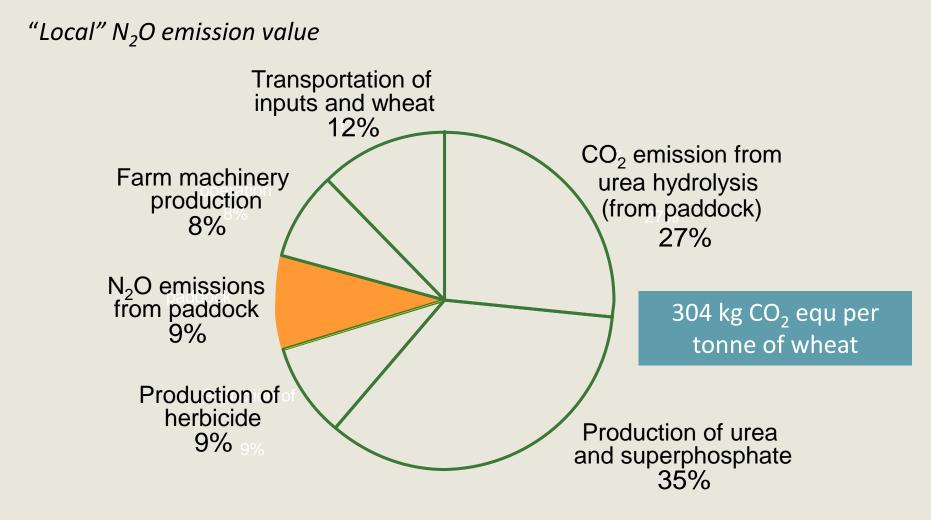
Will increasing soil carbon contents increase cumulative N₂O emissions in coarse textured soils?


20 t organic matter (chaff)/ ha incorporated every 3 years; 80 t/ha to date when N₂O study commenced

Liebe Group's Long Term Soil Biology Trial, established 2003

Liebe long-term soil biology trial: Soil carbon stocks

Increasing SOC increased N₂O emissions ...



.... But losses are still relatively small.

Location	Crop	N Rate (kg N/ha)	Annual Rate (kg N/ha)	EF (%)
Buntine (+OM)	Canola	0	0.06	0.09
		100	0.14	
Buntine (+OM)	Barley	0	0.15	0.12
· · · ·		100	0.27	
Cunderdin	Wheat	0	0.09	0.02
		100	0.11	
Cunderdin	Wheat	0	0.07	0.02
		75	0.09	
Cunderdin	Canola	0	0.08	0.06
		75	0.13	
Cunderdin	Lupin	0	0.13	na
Wongan Hills	Lupin	0	0.04	na
	Wheat	75	0.06	
Wongan Hills	Wheat	20	0.06	na
5	Wheat	50	0.07	

Nitrous oxide emissions mitigation

N₂O emissions need to be correctly accounted for when calculating the GHG emissions from agricultural products

Source: Biswas et. al. 2008. Water and Environment Journal 22: 206-216.

35%

Mitigation strategies

Approaches to decreasing N₂O emissions following summer rainfall events:

- ✓ Decrease N_2O emissions from nitrification
- ✓ Increase soil nitrogen immobilisation
- ✓ Increase plant nitrogen uptake during summer and autumn

Mitigating summer N₂O emissions Liming

Source: Barton et. al. 2013. Agriculture, Ecosystems and Environnent 167: 23–32

Hourly N₂O emissions following summer rain

Increasing soil pH decreased soil N₂O emissions

• Five summer-autumn rainfall = 79% of total N_2O emissions

Rotation	N ₂ O from summer rain g N ₂ O-N ha ⁻¹		
	Plus lime	No lime	
Wheat-wheat	0.09 ^b	0.13ª	
(125 kg N ha ⁻¹ over 2 years)			
Lupin-wheat	0.11 ^{ab}	0.10 ^{ab}	
(20 kg N ha⁻¹ over 2 years)			

Liming decreased total N₂O emissions from wheat-wheat rotation by 30%.

Source: Barton et. al. 2013. Agriculture, Ecosystems and Environment 167: 23–32

Contents lists available at SciVerse ScienceDirect

Soil Biology & Biochemistry

journal homepage: www.elsevier.com/locate/soilbio

Is liming soil a strategy for mitigating nitrous oxide emissions from semi-arid soils?

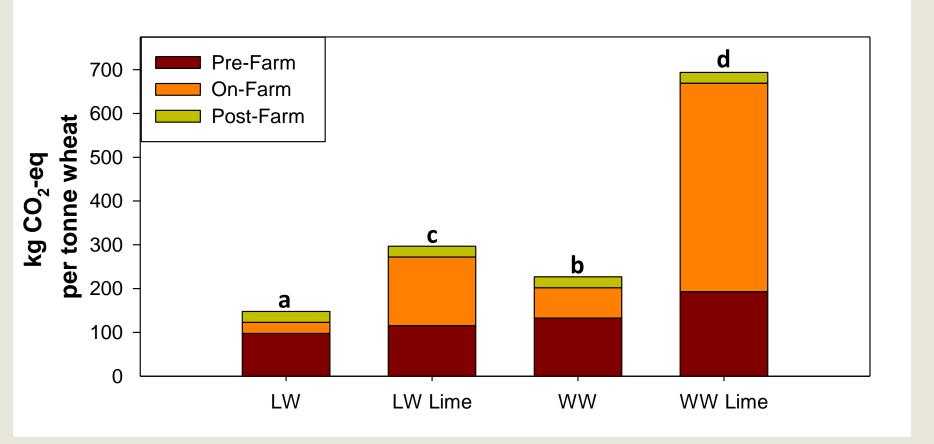
L. Barton^{a,*}, D.B. Gleeson^a, L.D. Maccarone^a, L.P. Zúñiga^b, D.V. Murphy^a

^a Soil Biology and Molecular Ecology Group, School of Earth & Environment (M087), UWA Institute of Agriculture, Faculty of Natural & Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
^b Department of Biotechnology and Bioengineering, Cinvestay, Av. Instituto Politécnico Nacional 2508, C.P. 07360 México, D.F., Mexico

A R T I C L E I N F O

Article history: Received 24 August 2012 Received in revised form 15 February 2013 Accepted 18 February 2013 Available online 13 March 2013

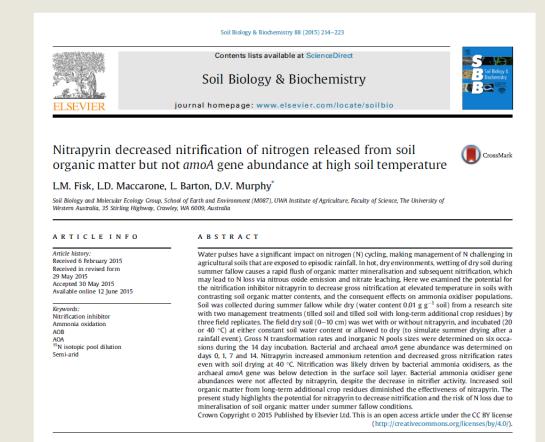
Keywords:


Ammonia oxidising archaea Ammonia oxidising bacteria Denitrification ¹⁵N qPCR Liming Nitrification

ABSTRACT

Nitrous oxide (N₂O) emissions in semi-arid regions are often greater following summer rainfall events when the soil is fallow, than in response to N fertiliser applications during crop growth. Nitrogen fertiliser management strategies are therefore likely to be ineffective at mitigating N₂O emissions from these cropped agricultural soils. Here we examined the influence of raising soil pH on N₂O emissions, nitrification rates, and both nitrifier and denitrifier populations following simulated summer rainfall events. The soil pH was raised by applying lime to a field site 12 months before conducting the laboratory experiment, resulting in soil of contrasting pH (4.21 or 6.34). Nitrous oxide emissions ranged from 0 when the soil was dry to 0.065 μ g N₂O–N g dry soil⁻¹ h⁻¹ following soil wetting; which was attributed to both denitrification and nitrification. Increasing soil pH only decreased N₂O emissions when losses were associated with nitrification, and increased *amoA* gene copy numbers. We propose increasing soil pH as a strategy for decreasing soil N₂O emissions from acidic soils following summer rainfall in semiarid regions when emissions result from nitrification.

© 2013 Elsevier Ltd. All rights reserved.


.... But liming increased the 'carbon footprint' of wheat production

Source: Barton et. al. 2014. Journal of Cleaner Production 83: 194–203

Mitigating summer N₂O emissions Nitrification Inhibitors

- "Nitrapyrin increased ammonium retention and decreased gross nitrification rates at 40 °C"
- "Increasing soil organic matter from long-term additional crop residues diminished the effectiveness of the nitrapyrin"

Reference: Fisk et al. 2015. Soil Biology & Biochemistry 88: 214–223.

Concluding statements and questions

- Nitrous oxide emissions are (relatively) low from semiarid cropping soils in Western Australia. But how well have they been characterised in other semiarid regions? Good estimates ensure
 - Agriculture is accurately represented in National Greenhouse Gas Inventories
 - 'Carbon footprints' of agricultural products from semiarid regions are correctly estimated.
- ✓ Does including grain legumes in cropping rotations enhance N₂O emissions in other semiarid regions?
- We cannot measure N₂O emissions everywhere and for all scenarios.
 But how well do we currently model N₂O emissions from semiarid regions? Particularly, highly episodic events.
- The regulation of N₂O emissions following summer rain is not fully understood in our region, and warrants further attention. Time to return to the laboratory?

Acknowledgements

Organisers of 'Transitioning Cereal Systems to Adapt to Climate Change'

Debra Donovan, Renee Buck, David Gatter, Chris Swain, and Andrew Wherrett

Colleagues at the Department of Food & Agriculture WA and Curtin University

The various research projects have funded by the

- Australian Government's Climate Change Research Program,
- Australian Research Council (DP0559791)
- Department of Agriculture & Food Western Australia.
- Grains & Research Development Corporation
- German Science Foundation

Australian Government

Thank you!

University of Idaho

United States Department of Agriculture National Institute of Food and Agriculture

Pacific Northwest Farmers Cooperative

Monsanto

